Well-posed Solutions of the Third Order Benjamin–Ono Equation in Weighted Sobolev Spaces

نویسنده

  • Xueshang Feng
چکیده

Here we continue the study of the initial value problem for the third order Benjamin-Ono equation in the weighted Sobolev spaces Hs γ = H s⋂L2γ , where s > 3, γ ≥ 0. The result is the proof of well-posedness of the afore mentioned problem in Hs γ , s > 3, γ ∈ [0, 1]. The proof involves the use of parabolic regularization, the Riesz-Thorin interpolation theorem and the construction technique of auxiliary functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ivp for the Dispersion Generalized Benjamin-ono Equation in Weighted Sobolev Spaces

We study the initial value problem associated to the dispersion generalized Benjamin-Ono equation. Our aim is to establish well posedness results in weighted Sobolev spaces and to deduce from them some sharp unique continuation properties of solutions to this equation. In particular, we shall establish optimal decay rate for the solutions of this model. RÉSUMÉ. Nous étudions le problème de Cauc...

متن کامل

Complex-valued Solutions of the Benjamin–ono Equation

We prove that the Benjamin–Ono initial-value problem is locally well-posed for small data in the Banach spaces H̃σ(R), σ ≥ 0, of complex-valued Sobolev functions with special low-frequency structure.

متن کامل

Global Well-posedness of the Benjamin–ono Equation in Low-regularity Spaces

whereH is the Hilbert transform operator defined (on the spaces C(R : H), σ ∈ R) by the Fourier multiplier −i sgn(ξ). The Benjamin–Ono equation is a model for one-dimensional long waves in deep stratified fluids ([1] and [16]) and is completely integrable. The initial-value problem for this equation has been studied extensively for data in the Sobolev spaces H r (R), σ ≥ 0. It is known that the...

متن کامل

On the Persistence Properties of Solutions of Nonlinear Dispersive Equations in Weighted Sobolev Spaces

We study persistence properties of solutions to some canonical dispersive models, namely the semi-linear Schrödinger equation, the k-generalized Korteweg-de Vries equation and the Benjamin-Ono equation, in weighted Sobolev spaces Hs(Rn) ∩ L2(|x|ldx), s, l > 0.

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000